• 🔥 Большое обновление PirateHUB Private!

    PirateHUB Private - закрытое сообщество PirateHUB, внутри которого:
    150+ приваток авторов по различным направлениям, 15+ совместных доступов, несколько сотен курсов в день от зарубежных авторов напрямую и многое другое. Нас уже почти 1000 человек!


    Что внутри + отзывы довольных участников:

    Ознакомиться

    *Анонсированы крупные обновления, не пропустите!

    ❗️Вход по старой цене открыт до 7 ноября включительно! Каждый участник получает бесплатный доступ к Web-Master Club от PirateHUB Academy и дополнительные бонусы!

Business [udemy.com] Machine Learning using Python

elt-1.jpg

What you'll learn
  • Understand Decision Trees, Random Forest, Neural Networks, K-Means Clustering, Apriori algorithm
  • Learn about Classification Algorithms, Regression Algorithms, Linear Regression, Logistic Regression, Naive Bayes Classifier.
  • Learn machine learning, its algorithms and application using Python.
  • Learn about Python Packages for Machine Learning
Requirements
  • No prior knowledge of machine learning required
  • Basic knowledge of Python
Desсription

Machine learning is a scientific discipline that explores the construction and study of algorithms that can learn from data. Such algorithms operate by building a model from example inputs and using that to make predictions or decisions, rather than following strictly static program instructions. Machine learning is closely related to and often overlaps with computational statistics; a discipline that also specializes in prediction-making.

This training is an introduction to the concept of machine learning, its algorithms and application using Python.

The training will include the following;
  • What is Machine Learning? (Intro – why its used, Data Science defined)
  • Analytics Defined (Predictive, Prescriptive etc.,)
  • Data Mining Flow(Phases defined – with MOdeling phase that involves ML)
  • Explanation on Data Set
  • Supervised Learning
  • Unsupervised Learning
  • Classification Algorithms
  • Regression Algorithms
  • Linear Regression
  • Logistic Regression
  • Naive Bayes Classifier
  • Anonymous Detection
  • Decision Trees
  • Random Forest
  • Neural Networks
  • K-Means Clustering
  • Apriori algorithm
  • Feature Selection
  • Support Ventor Machine
  • Basic explanation on Use Cases
  • Basic Functions defines (Cost function, likelihood function, normalization, trade off etc.,)
  • Primary tools/ Softwares used for ML
  • Python Packages for Machine Learning
Who this course is for
  • Data Engineers
  • Analysts
  • Architects
  • Software Engineers
  • IT operations
  • Technical managers
  • Anyone who wants to learn about data and analytics
SALES PAGE:
DOWNLOAD:
 

Похожие темы

Назад
Сверху